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Current-induced torque is formulated based on the spin continuity equation. The formulation does not rely
on the assumption of separation of local spin and charge degrees of freedom, in contrast to approaches based
on the s-d model or mean-field approximation of itinerant ferromagnetism. This method would be thus useful
for the estimation of torques in actual materials by first-principles calculations. As an example, the formalism
is applied to the adiabatic limit of the s-d model in order to obtain the analytical expression for torques and the
corresponding � terms arising from spin relaxation due to spin-flip scattering and spin-orbit interaction.
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I. INTRODUCTION

Spin-transfer torque is a torque acting on local spins as a
result of an applied current. Such a torque has been discussed
mostly based on s-d type of exchange interaction1–6 after the
pioneering works by Berger7,8 and Slonczewski.9 In s-d
models, the conduction electrons and localized spins are dis-
criminated and therefore the transfer of spin angular momen-
tum between those two degrees of freedom occurs. However,
in reality, this separation of degrees of freedom is not always
so obvious; since in an itinerant picture, all electronic bands
contribute to both conduction and magnetism with different
weights. Thus, the formulation of spin torques based on the
s-d picture is an approximation and this is a serious problem
when one tries to evaluate current-induced torques in actual
materials. For trustful estimates, formulations beyond the
simple s-d separation is certainly required. Such formalism
can be combined with first-principles calculations without
any artificial assumption and would be useful for realistic
estimates of current-induced torques and of efficiency of
current-induced switching. The aim of this paper is to de-
velop a calculational scheme satisfying these requirements
based on the spin continuity equation.

Theoretical determination of current-induced torques is
difficult even in the simplest case of s-d model when spin
relaxation and nonadiabaticity is present.4,5,10–15 So far, very
few studies on the effect of spin relaxation due to spin-flip
scattering by magnetic impurities have been done
microscopically.4,5,12 In the s-d formalism, the current-
induced torque is represented as the effective field due to the
spin polarization of the conduction electron s. The torque is
therefore given as ��sd�=−JsdS�s, where S is the localized
�d� electron spin and Jsd is the exchange interaction constant.
Microscopic calculation using linear-response theory4,5 re-
vealed, in agreement with phenomenolocigal result,2 that
spin-flip interaction of conduction electrons with random im-
purities induces a torque perpendicular to the spin-transfer
torque �called � terms16�. The torque is written as

���� = − �
P

eS2 �S � �j · ��S� , �1�

where P is the spin polarization of the current and j is the
current density. The coefficient � was calculated by sum-

ming over not a few Feynman diagrams, representing self-
energy and vertex corrections.4,5,15

The case of itinerant ferromagnetism was studied by
Tserkovnyak et al.10 and Duine et al.12 They introduced the
magnetization as a mean-field expectation value of itinerant
electron spin and, thus, the models considered were effec-
tively the s-d model. Tserkovnyak et al. considered a kinetic
equation for the spin density with a consistency condition for
the magnetization, but the spin dephasing term was intro-
duced phenomenologically. Duine et al. estimated the
torques by calculating the effective action for the magnetiza-
tion fluctuation, which has been assumed to be of small am-
plitude. Within the mean-field treatment, the torque in the
itinerant case turned out to be exactly the same as that of the
s-d model.4,12

It has recently been noticed that the coefficient � is very
important for the realization of highly efficient magnetization
switching by the current.2,15–17 First, it affects the threshold
current and the intrinsic pinning threshold is replaced by an
extrinsic one, which is usually lower than the intrinsic one.
Second, it results in a terminal speed of the wall v�

�
� j,

which can exceed the pure spin-transfer speed limit if �
� is

large �� is Gilbert damping parameter�. Third, the deforma-
tion of the wall depends on �. When ���, deformation is
suppressed and weak dissipation may be expected.18 Experi-
mental studies of the value of � have recently been carried
out. Significant wall deformation observed in permalloy in-
dicated that ���.18 Thomas et al.19 found for permalloy that
the observed wall speed corresponds to ��8�. Therefore,
determination of � is of particular importance for device
applications.

In this paper, we will present a microscopic calculation
scheme different from the s-d formalism.7,8 The idea is sim-
ply to use the continuity equation of spin and thus the for-
mulation is not necessarily based on the s-d interaction pic-
ture. The formalism turns out to be quite powerful, in
particular, for the determination of spin-relaxation effect �.
The continuity equation, which we consider, is essentially
the kinetic equation discussed by Tserkovnyak et al.,10 but all
observables have been microscopically defined and can be
calculated using our formalism. For instance, spin dephasing
time introduced phenomenolocigally in Ref. 10 is repre-
sented by the spin source term �T� defined by Green’s func-
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tion in our formalism. Microscopic details of this term T turn
out to be essential in determining the spin-relaxation-induced
torque.

Our scheme is applicable also to the s-d model or mean-
field approximation of itinerant ferromagnetism. We will use
our formalism to obtain the analytical expression of the
torques arising from both spin-flip scattering and spin-orbit
interaction arising from the impurities in the s-d model in the
adiabatic limit. In the present formalism, the number of con-
tributing diagrams is less than the number of diagrams used
in the s-d exchange formalism4,5 and thus the calculation is
easier.

II. FORMALISM

The spin density s of the total system is defined as the
expectation value of conduction-electron spin, summed over
all bands n as

s��x,t� � �
n

�cn
†�x,t���cn�x,t�	 . �2�

It satisfies the equation �ṡ�= i�n���H ,cn
†���cn	

+ �cn
†���H ,cn�	� where H is total Hamiltonian. We assume

that H consists of free and spin-relaxation parts Hsr as H
=
d3x�n

�2

2m ��cn�2+Hsr. Then the continuity equation is ob-
tained as

�ṡ� = −
1

e
� · js

� + T�, �3�

where e represents the electron charge. Here the spin current
js is defined by the free part as

js	

� � −
ie�

2m
�

n

�cn
†�x,t��J	��cn�x�,t�	 , �4�

and the spin source �or sink� T is a contribution arising from
spin relaxation and interaction, i.e.,

T� � i�
n

���Hsr,cn
†���cn	 + �cn

†���Hsr,cn�	� . �5�

The continuity �Eq. �3�� is sufficient to calculate the torque
acting on the spin. Actually, the equation is equivalent to the
equation of motion of spin �ṡ=� where � represents the total
torque acting on the spin. The torque is thus simply given by

�� = −
1

e
� · js

� + T�. �6�

Note that the continuity equation describes the time de-
pendence of the spin density and, therefore, the right-hand
side of Eqs. �3� and �6� is uniquely defined even in the pres-
ence of spin relaxation, where the spin current can be defined
in several different ways �see Ref. 20�. In the context of spin
Hall effect, the continuity �Eq. �3�� was used to obtain proper
definition of spin current and to explore transport
properties.21–23 Concerning the current-induced torques, Eq.
�6� has been so far applied only in the absence of spin-
relaxation term, where the torque is given by the divergence
of the spin current.24,25 The main aim of this paper is to study
the spin-relaxation contribution T.

Let us look explicitly at the continuity equation, in case of
spin relaxation, due to spin impurities and spin-orbit interac-
tion Hsr=Hsf+Hso. Spin-flip interaction is described by

Hsf = vs� d3x�
n

Simp�x� · �cn
†�cn� , �7�

where vs is a constant, Simp�x���i
nimpSimpi


�x−Ri�, Simpi
rep-

resents the impurity spin at x=Ri, and nimp denotes the num-
ber of impurity spins. The spin-orbit interaction is written as

Hso = −
i

2
�so� d3x�

ijkl

�ijk� jVso
�l��x��cn

†�l�Jkcn� , �8�

where the potential Vso
�l� is here assumed to arise from random

impurities and depends on the spin direction �l�.
The spin-relaxation torque is given by a sum of contribu-

tions from spin-flip and spin-orbit interactions as T�=Tsf
�

+Tso
� , where

Tsf
��x� = 2vs�

�

����Simp
� s	i, �9�

Tso
� �x� = − 2m�so �

�	�

����	����	Vso
���x�jsv

 	i. �10�

The average over random impurity spins and spin-orbit po-
tential is represented by � 	i.

All the terms in the right-hand side of torque �Eqs. �6�,
�9�, and �10�� are written in terms of local spin density and
local spin current and so the torque acting on the spin is
calculated by estimating the spin density and the spin cur-
rent. This representation of the spin torque applies to any
spin-relaxation processes and interaction and is directly cal-
culable without assuming separation of spin and charge de-
grees of freedom. Equations �6�, �9�, and �10� are thus suit-
able starting points for realistic estimates based on first-
principles calculations. This is the essential point of this
paper �although ab initio calculations, using the present for-
malism, still need to be undertaken�.

III. APPLICATION TO THE s-d MODEL

In Secs. III A and III B of the paper, we will apply this
formulation to estimate the current-induced torques in the
adiabatic limit �i.e., slowly varying magnetization compared
to conduction-electron motion� to show the validity and use-
fulness of our formalism. We will calculate the torque arising
from the spin relaxation due to both the spin-flip scattering
and the spin-orbit interaction. It is found that the torque is
represented by the so-called � term in both cases and values
of corresponding � are calculated. Our formulation is thus
useful for both analytical and numerical studies.

We will now consider the s-d model with only one con-
duction band. Please note that the assumption of separation
of s and d electrons here is simply for analytical demonstra-
tion and is not a requirement for the present formulation. The
s-d interaction between a localized spin S and the conduction
electrons is given by
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Hex � − Jsd� d3xS�x,t� · �c†�c� . �11�

We describe the adiabatic limit by the standard local gauge
transformation in the spin space, choosing the electron spin-
quantization axis along S�x , t� at each point. A new electron
operator a��a+ ,a−�t �t denotes transpose� is defined as
c�x , t��U�x , t�a�x , t� where U is a 2�2 matrix, which we
further define as U�x , t��m ·� with m being a real three-
component unit vector m= �sin�

2cos � , sin�
2sin � , cos�

2 �. The
gauge field is written as A	

� ��m��	m��. Then the Hamil-
tonian of a electrons is given by the free part �k��k�ak�

† ak�

��k���k−�M, �=� represents the spin�, HA describing the
interaction with the SU�2� gauge field, and Hem as the inter-
action with the external electric field, which drives the
current.1,15 Here, we consider static local spins in the adia-
batic limit, where the momentum transferred by the gauge
field to conduction electrons is negligibly small �compared to
kF� and take into account the gauge field only in linear order.
Then, the gauge interaction is given by15

HA =
�2

m
�

q
�
	

k	A	
��− q�ak

†��ak. �12�

The applied electric field is represented by the interaction,

Hem = �
	

ie�E	

m�0
ei�0t�

k
�k	ak

†ak + �
�q

A	
��q�ak

†��ak� + O�E2� ,

�13�

where �0 is the frequency of the field chosen as �0→0 at
the end of calculation.

The spin-current part of the torque is calculated in the
adiabatic limit as

− � · js
�  − ��	n�js	

. �14�

Here, n�S /S and, therefore, this contribution corresponds
to the standard spin-transfer torque.

A. Torque from spin-flip scattering

Let us turn to the spin-relaxation part of the torque arising
from spin impurities, i.e., Eq. �9�. The effect of spin relax-
ation on the spin-current part can be shown to be simply due
to modification of lifetime �. Here, we assume that the im-
purity spins are influenced by a strong s-d exchange field and

write Simp
� �x�=R���x�S̃imp

� �x�, where S̃imp
� represents impurity

spin in the rotated frame, and

R�� � 2m�m� − 
��, �15�

is a rotation matrix. Then the averaging is given by

�S̃imp
� �x�S̃imp

� �x��	i=
1
3
��
�x-x��nimpSimp

2 where nimp is the im-
purity spin concentration. Averaging taken with respect to
Simp turns out to lead to—essentially—the same result as in

the case of S̃imp. The spin source term is written as

Tsf
��x� = − 2ivs�

�

F���x��S̃imp
� �x�tr��G̃x,x

� �	i, �16�

where

F�� � �
	�

��	�R	�R�, �17�

and G̃x,x�
� � i�a†�x��a�x�	 is the lesser component of the

Green’s function defined on Keldysh contour in the complex
time. To the lowest �second� order in vs, we obtain after
averaging over spin impurities,

Tsf
��x� = − i

2

3
nimpvs

2Simp
2 �

�

�
	�

F���x�tr���G̃x,x
�0��G̃x,x

�0���

+ O�vs
4� , �18�

where G̃�0� denotes Green’s functions without impurity spins
but including the gauge field A and external electric field E.
Including these fields in linear order, we obtain

Tsf
��x� = −

2e

3m
nimpvs

2Simp
2 �

�	�

F���x�E	A�

�x�D	�

�
,

�19�

where

D	�
�
 � lim

�0→0

1

�0
� d�

2�
�
kk�

tr����
	�gk���gk��
gk�+�0

+
k	k�

m
�gk���gk�gk�+�0

�
gk�+�0

+ gk���gk��
gk�gk�+�0
����

+ c.c. �20�

Here, the Green’s function gk� is the Fourier representation
of free Green’s function and � �� denotes the lesser compo-
nent. They are diagonal in spin space, being defined in
gauge-transformed space. Complex conjugates are denoted
by c.c. Figure 1 shows the contributions to D	�

�
 diagram-
matically. The lesser component is calculated in standard
manner in the limit of �0→0. The first two diagrams of Fig.
1 are simplified by the use of partial integration over k using
k	

m �gk
a�2= �

�k	

gk
a, etc. These contributions are obtained as

D	�
�
�1−2�

= lim
�0→0

� d�

2�
�
kk�

tr� f����
k	k�

m
���gk��

r
�

+ �gk��
a

�����gk�
r �2�
gk�

a + gk�
r �
�gk�

a �2�

+ 
	�� f���
2

�����gk��
a �2�

− ��gk��
a �2���gk�

a �
gk�
a − c.c.�

σβ

σγ

σδ

k′ω kω

kω
k, ω + Ω0

Aδ
ν

Eµ

Eµ

Aδ
ν

k, ω + Ω0
k, ω + Ω0

FIG. 1. Diagrammatic representation of D	�
�
. Double-dashed,

dotted, and wavy lines denote interaction with impurity spin, ap-
plied electric field E, and gauge field A, respectively.
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−
1

�0
� f�� −

�0

2
����gk��

a
�

+ �gk��
a

���gk�
a �
gk�

a − f�� +
�0

2
����gk��

r
�

+ �gk��
r

���gk�
r �
gk�

r ��� , �21�

where f�����e��+1�−1. Similarly, the third contribution in
Fig. 1 is obtained as

D	�
�
�3�

= lim
�0→0

� d�

2�
�
kk�


	� tr� f�������gk�
r

�

+ �gk�
a

���gk
r �
gk

a + �−
f���

2
�����gk��

a �2�

− ��gk��
a �2���gk�

a �
gk�
a − c.c.���gk��

a
�

+ �gk��
a

����gk�
a �
�gk�

a �2 − �gk�
a �2�
gk�

a � − c.c.�

+
1

�0
� f�� −

�0

2
����gk��

a
� + �gk��

a
���gk�

a �
gk�
a

− f�� +
�0

2
����gk��

r
� + �gk��

r
���gk�

r �
gk�
r ��� .

�22�

Noting that only antisymmetric part with respect to � and 
contribute to the torque, these contributions are summed to
be

D	�
�
 = − i� d�

2�
�
kk�

f���� tr���� Im�gk�
a �� − � Im�gk�

a ����

�� k	k�

m
��gk

r �2�
gk
a + gk

r �
�gk
r �2� + 
	��gk

r �
gk
a��� , �23�

where gk
r �gk,�=0

r , etc. We see that spin-flip processes con-
tribute as additional lifetimes as indicated by the imaginary
part of spin-scattered electron Green’s function Im gk�

a .
To estimate the trace in the spin space, we use general

identities, which hold for 2�2 diagonal matrices B ,C, and
D �containing only �z and the identity matrix�,

tr����B� − �B����C�
D + D�
C��

= 2i����
 − ��z

z���BC�+D− + �BC�−D+ + �BD�+C−

+ �BD�−C+� + 2��z

z�B+�CD�− + B−�CD�+�� ,

tr����B� − �B����C�
D − D�
C��

= 2�
z
�
 − 
�z

���BC�+D− − �BC�−D+ − �BD�+C−

+ �BD�−C+� , �24�

where the components B� are defined as B= �B++B−+
�B+−B−��z� /2, etc. The result for D	�

�
 is then obtained as

D	�
�
 = 
	��a���
 − ��z

z� + b�
�

z − 


�z�� ,

�25�

where the coefficients are given by

a = −
1

2�
�
kk�

�
���

� k2

3m
�gk�

r �2�gk,−�
a + gk,−�

r �

+ �gk�
r gk,−�

a + gk�
a gk,−�

r ���Im gk���
a � ,

b = −
1

2�
�
kk�

�
���

�i��gk�
a gk,−�

r �Im gk���
a � . �26�

Using F��=−���−2�
m
���
m�−���
m� and A	

= 1
2 �n��	n�−A	

z n,15 the torque due to spin flip is obtained
as

Tsf = −
2e

3m
vs

2Simp
2�

	

E	�a�n � �	n� − b�	n� . �27�

The coefficients a and b are calculated as a=��m /e2M�
��+−�−���++�−� and b=O�a� ��F��−1�0, where �� and
��=e2n��� /m are the spin-resolved conductivity and density
of states, respectively. Coefficient b is treated as zero within
the present approximation. Therefore, the torque induced by
the spin relaxation is simply a � term given by

Tsf = − �sf
P

e
�n � �j · ��n� , �28�

where P���+−�−� / ��++�−� is the spin polarization of the
current and

�sf =
2�

3M
nimpvs

2Simp
2��+ + �−� . �29�

Defining the spin-flip lifetime ��s of Ref. 4� as �note that
Sz

2+S�
2 of Ref. 4 corresponds to 2

3Simp
2 here� �sf

−1

= �4� /3�nimpvs
2Simp

2��++�−�, we find �sf=� / �2M�sf�, which
agrees with the results obtained in Refs. 4 and 5.

B. Torque from spin-orbit interaction

The torque from spin-orbit interaction �Eq. �10�� is calcu-
lated in a similar way. The spin-orbit interaction is written in
the rotated frame as

Hso = �so� d3x�
ijkl

�ijk� jVso
�i��x�Ril�x��−

i

2
a†�l�Jka + Ak

l a†a� .

�30�

The spin-orbit contributions to the spin current and the elec-
tron density in the rotated frame are obtained as
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js�

� �x� = −
i

2m
�so�

ijkl

�ijk��x − �x���� d3x1� jVso
�i��x1�Ril�x1�

� tr���G̃x,x1�
�0� �−

i

2
��� x1 − �� x1��k�

l

+ Ak
l �x1��G̃x1,x�

�0� �
x�→x,x1�→x1

�

,

ne�x� = −
i

2
�so�

ijkl

�ijk,� d3x1� jVso
�i��x1�Ril�x1���� x1

− �� x1��ktr�G̃x,x1�
�0�

�lG̃x1,x�
�0� �x�→x,x1�→x1

� + O�A� . �31�

The torque is then calculated as

Tso
� �x� = − i�so

2 �
�	��

�
jklm

��	��lm���jk

�� d3x1R	��x�R��x1� �
kk�p

�
k1k1�

�plpje
−ip·�x−x1�e−i�k−k��·xe−i�k1−k1��·x1�Vso

����p�Vso
����− p�	

��1

2
�k + k��m�k1 + k1��k tr���G̃k,k1

�0� �G̃k1�,k�
�0� ��

+ �k + k��mAk
�x1� tr���G̃k,k1

�0� G̃k1�,k�
�0� ��

+ �k1 + k1��kAm
��x1� tr�G̃k,k1

�0� �G̃k1�,k�
�0� ��� . �32�

In the adiabatic limit, we consider Green’s functions are di-

agonal in wave vectors G̃k,k�
�0� =
k,k�G̃k

�0� and the integration
over x1 can be carried out, treating the slowly varying vari-
ables R�x1� and A�x1� as constants, resulting in

dx1e−i�p−k+k��·�x−x1�=V
p,k−k�. We therefore obtain

Tso
� �x� = − i�so

2 �
�	��

�
jklm

��	��lm���jkR	��x�R��x��
kk�

��k − k��l�k − k�� j�Vso
����k − k��Vso

����− k + k��	

��1

2
�k + k��m�k1 + k1��k tr���G̃k

�0��G̃k�
�0���

+ �k + k��mAk
�x� tr���G̃k

�0�G̃k�
�0���

+ �k + k��kAm
��x� tr�G̃k

�0��G̃k�
�0���� . �33�

We average over spin-orbit impurities so that the average
remains finite only when the spin polarizations are parallel.
Impurity averaging is thus given as

�Vso
����p�Vso

����− p��	i = nso
��
p,p�. �34�

The result of the torque is

Tso
� �x� = − i

1

2
nso�so

2 �
�	��

��	�R	��x�R��x� � �
kk�

��k � k���

��k � k��� tr���G̃k
�0��G̃k�

�0��� + �k � k�����k − k��

� A�� tr���G̃k
�0�G̃k�

�0��� + �k � k�����k − k��

� A��� tr�G̃k
�0��G̃k�

�0�����=�. �35�

The last two terms lead to vanishing contribution in the adia-

batic limit. In fact, these are already linear in A and so G̃�0�

does not contain spin-flip components, and thus �z and G̃�0�

commute each other. We therefore obtain

��k − k��A�� tr���G̃k
�0�G̃k�

�0��� + ��k − k��A���

�tr�G̃k
�0��G̃k�

�0���

= �
�,z��k − k�� � A�� + 
,z��k − k��

� A���� tr��zG̃k
�0�G̃k�

�0���. �36�

This contribution is symmetric with respect to � and  and
results in zero when multiplied by F	�

��, which is asymmetric
with respect to � and .

The first term of Eq. �35� can be simplified by using the
rotational symmetry of electron, ��k�k����k�k���	= 1

3 ��k
�k�� · �k�k��	= 1

3 ��k2k�2− �k ·k��2�	 �� 	 denotes the angular
average�, as

Tso
� �x� = − i

1

6
nso�so

2 �
�	��

�
kk�

F	�
���k2k�2

− �k · k��2�tr���G̃k
�0��G̃k�

�0���. �37�

We therefore see that the expression is similar to that of
spin-flip impurity case �Eq. �18��. Including the effect of
electric and gauge fields to linear order in both similarly to
the spin-flip impurity case, we obtain the torque as

Tso = −
e

6m
nso�so

2 a��
	

E	�n � �	n� , �38�

where coefficient is given as

a� = −
1

2�
�
kk�

�
���

�k2k�2 − �k · k��2�� k2

3m
�gk�

r �2�gk,−�
a + gk,−�

r �

+ �gk�
r gk,−�

a + gk�
a gk,−�

r ���Im gk���
a � . �39�

The coefficient is calculated as a�=�
2m

3e2M
��+kF+

2

−�−kF−
2 ���+kF+

2 +�−kF−
2 �. Therefore, spin-orbit interaction

yields the � term with coefficient given by

�so =
1

2M

1

n+�+ − n−�−
�n+�+

�+
�so� −

n−�−

�−
�so� � , �40�

where
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1

��
�so� �

2�

9
nso�so

2 kF�
2 ��+kF+

2 + �−kF−
2 � , �41�

with ��
�so� as the lifetime due to spin-orbit interaction.

The total current-induced torque in the adiabatic limit is
therefore given by Eqs. �14�, �28�, �29�, and �40� as

� = −
P

2e
�� · j�n − �sr

P

e
�n � �j · ��n� , �42�

with �sr��sf+�so.

IV. SUMMARY

In summary, we demonstrated that the spin continuity
equation represents the current-induced torque acting on the
magnetization and that it can be used for microscopic deter-
mination of the torques. The present formalism does not as-
sume separation of magnetization and conduction-electron
degrees of freedom and can directly be applied to itinerant
electron systems without mean-field approximation. In this
paper, the formalism was applied to the s-d model in the
presence of spin relaxation caused due to spin-flip scattering
and spin-orbit interaction with impurities. Both relaxation
processes were shown to induce the so-called � torque term.

Application of the formalism to realistic itinerant system
using first-principles calculations would be very interesting
since it would allow for quantitative estimations of current-
induced switching. Of particular interest are the systems with
enhanced spin-orbit interaction near surfaces and multilay-
ers. Our formulation can be easily extended to describe these
systems.

Further improvement of the present theory would be to
include effects caused by electron-electron correlation. If the
correlation is represented within the mean-field approxima-
tion by a local spin-dependent potential, the torque is
straightforwardly calculated similarly to the estimate of spin-
flip scattering. Treatment beyond mean field would be an
important future work.

Note added in proof. Recently, we found that the spin-
transfer torque in the presence of spin-orbit interaction in
ferromagnetic semiconductors was studied in Ref. 26.
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